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ABSTRACT

Numerical methods for solving the heat equation via potential theory have been ham-
pered by the high cost of evaluating heat potentials. When M points are used in the
discretization of the boundary and N time steps are computed, an amount of work of the
order O(N 2M2) has traditionally been required. In this paper, we present an algorithm
which requires an amount of work of the order O(NM), and we observe speedups of five
orders of magnitude for large-scale problems. Thus, the method makes it possible to solve
the heat equation by potential theory in practical situations. _________ForAccesiori For
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1 Introduction

A classical approach to the solution of the heat equation

Ut = AU

in a space-time domain QT = H'T0 Q(t) (see Fig. 1) is through the use of heat potentials
[3,7]. Given zero initial conditions, one seeks a representation of U as a single layer heat
potential

Sy(x, t) =-j-jK(x, x', t - t')p(x', t') dx' dt' (1)

or a double layer heat potential

D(,(x, t) = K x', t - t')p(x', t') dx' dt' , (2)

where K is a fundamental solution of the heat equation in some region containing n, n'
denotes the unit outward normal to r(t') = 8n(t') at x', and M is a surface density defined
on FT = -rIT= a(t).

Figure 1
A domain P2T contained in space-time Rn x R:. Q(t) is the cross-section of QT at time t. I'T is the
lateral boundary of QT. Its cross-section at time t is given by F() = (t).
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For example, the initial-Neumann problem where

U(x, O) =0 in Q(O)

19U
-- = g on rT

is reduced to the Volterra integral equation of the second ki, i

1I(x,t) + Dy(x,t) = g(x,t) on FT
2

by means of the representation U = Spt. Such an approach is used for numerical solution
of the heat equation in [4,6].

Other applications of heat potentials include the study of crystal growth and unstable
solidification which can be modelled by the integral equation

EC+V+U+SV =0,

where the unknown V is the normal velocity of the solid-liquid boundary F(t), C is the
curvature of r(t), e is a positive constant, and U is a given temperature field incorporating
the initial and boundary conditions. Recent numerical methods for unstable solidification
have used this formulation [5,8].

However, numerical methods based on heat potentials have been crippled by their
history-dependence: both solving the integral equation and evaluating the potential rep-
resentation require more and more work as time proceeds. Consider, for example, the
task of calculating Sy at a sequence of time levels t = At, 2At,..., NAt. At the nth
level, we must sum over n previous levels; therefore, the total work is O(N 2 ). As for the
spatial variables, if we are given M points xj, j = 1, 2,..., M in the discretization of the
boundary, the evaluation of Spt requires O(M 2 ) work per time step. Thus, solving the heat
equation up to a fixed time T by an integral equation method would seem to require at
least O(N M,) work. This high cost has prevented integral equation methods from being
used in practice.

In this paper, we develop an algorithm for the rapid evaluation of heat potentials. This
algorithm requires only O(MN) work to evaluate Spi or DM at M points on the boundary
at each of N time levels. Since there are MN data points and MN values to be computed,
this is asymptotically optimal. The basic idea of the algorithm is that the potential can be
split into two components, one representing the effects of the source i over distant time
(the history part) and one representing the effects of p over recent time (the local part).
The history part is smooth and can be well approximated by only a few Fourier modes.
The local part, on the other hand, can be well approximated by Taylor expansion, using
the singularity structure of the fundamental solution.

The outline of the paper is as follows; Section 2 describes the fundamental solution for
a box, Section 3 describes the fast algorithm itself, and Section 4 presents some numerical
r-,9,,1ts. We state our conclusions iu Section 5.
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The algorithm is currently being applied to crystal growth and unstable solidification
by Sethian and Strain [9]. In a subsequent paper, we will describe a different local approx-

imation and use the fast algorithm for the numerical solution of the heat equation.

A detailed description of the algorithm is presented only for the single layer potential

SM; the modifications necessary for evaluating Dpi or volume potentials are straightforward.
Furthermore, we consider only potentials formed with the "box" kernel defined below; one
advantage of the integral equation approach is that the solution in PT does not depend on
which kernel is used.

2 The Fundamental Solution in a Box

In this section, we obtain complementary representations for the fundamental solution K

of the heat equation in a box B = [0, 1]n with homogeneous Dirichlet boundary conditions.
A Fourier series calculation [2] shows that

/'(X, x', t) = 2 n > e-I~k~t 11sin(7rkjxj)sin(rkjx'), (3)
* kEN" i=1

where N denotes the positive integers, k = (kl, ... , k,) and x = (X 1, X,).

On the other hand, the method of images (see [10]) can be used to show that

K(x,x',t) = (4t) - n/1 E E ... E ala2.. n e- j x -ox' -2k jj2 /4t (4)
kEZ n al =1 a=1

where a. x' = (al xi,. .. , a, xx). This expression can also be derived by the Poisson
summation formula [2].

The equality of (3) and (4) is one of the foundations of our algorithm; both sums
converge exponentially fast, but in different regions of time. Indeed, the error in using pl

terms of (3) is of the order O(e -P2? 2 t ) as p2t -* cc, whereas the error in using 2 n ( 2p + 1)'
terms of (4) is of the order O(e- P2/t ) as p 2/t -- cc. Thus, we truncate the Fourier series
(3) to evaluate K for large t and the sum of Gaussians (4) to evaluate K for small t.

3 The Fast Algorithm

The fast algorithm will be explained in the simplest context, namely that of evaluating the
6 single layer heat potential

SP(x, t) = j j AK(x, x', t - t') ix', t') dx' dt' (5)

in two space dimensions. Here r(t) is a family of boundary curves lying in the unit box
B = [0,112 and K is the fundamental solution of the heat equation in B with homogeneous
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Dirichlet boundary conditions:

K(x,x',t) = 4 E e-',2Ijk 2 sin(7rkix,) sin(7rklx') sin(irk 2x2 ) sin(7rk 2x') (6)
kEN 2

1 E E 0 0 2 e -j jx -ox , _ 2 k j 2 / 4 t( 7- - Zr c i aq (7)
47rt kEZ2 ai=-1

We begin by splitting the time integral in (5) at time t - 6, with 6 a small parameter
to be determined later. Thus, we write SYi = SLIY + SFIU, where

SL(X, t) = jIt K(x, x', t - t')l (x', t') dx' dt' , (8)SLII(X, t) t-6 ('

SFP(X, t) = j j K(x, x', t - t')p(x', t') dx dt'(

The subscripts L and F refer to the local and Fourier parts, respectively.

3.1 Fast evaluation of SFY

First consider the component SF1', which contains the history-dependence of the potential.
After replacing K with its Fourier expansion (6), SF becomes a Fourier series

SFI(X, t) = E E Ck(t,6)sin(7rkxl)sin(rk 2x 2), (10)
k,=I k2 =1

with coefficients

Ck(t, 6) = 4 6 e - 7r2Ik 2(t- t') sin(irk, x') sin(7rk2x')tM(x', t') dx'dt'. (11)10 Jr~(t')12

This representation, by itself, does not eliminate the problem of history-dependence, be-
cause each of the Fourier coefficients Ck at time t is obtained by integrating over all
previous history. However, Ck(t, 6) can be computed from Ck(t - At, 6) recursively. That
is, by separating the final time interval At from the rest, we get

Ck(t, b) = e-" 2Ikj2AtCk(t - At,b) +
t -I e - 2 lk l2 (t't) 2 sin(irklx')sin(irkx=)z(x , t') dx' dt'. (12)

- trJ(t')12

Each coefficient Ck can be updated with constant work per time step, rather than recom-
puted from t = 0; history-dependence is effectively eliminated.

Remark 3.1 This elimination of history actually applies much more generally. Let an operator A
generate a semigroup ell, and consider the problem of evaluating the Duhamel integial

F(t) = e(t-t')Af(t ' ) dr'
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at a sequence of time levels t = At, 2At ... , NAt. Redoing the time integral at each step costs O(N 2) work,
but we can compute F(t + At) recursively from F(t):

t+A't

F(t + At) = e(t+At-t')Af(t ' ) dt' (13)

= e At F(t) + j, e(t-t')Af(tI) dt ' ) (14)

This costs only O(N) work up to time NAt. In the present paper, A is the Laplacian A on the box B with

Dirichlet boundary conditions on OB, and f(t') is a measure concentrated on F(t') with density .

Another feature of the Fourier series representation (10) for SFy is that it allows us to
take advantage of the smoothing effect of the heat operator. Higher modes are damped
exponentially, so that the Fourier series representation (10) of the kernel can be truncated
after p2 terms with an exponentially small error.

Lemma 3.1 Let t - t' > 6 and let Ep be the error in truncating the series ezpansion (6)
after p 2 terms

p p 
2

Up IK(x,x',t - t') -4 3 e-
W21kl2 (t-t') 1- sin(7rkixi) sin(7rkjx').

kj =1 k2 =1 =

Then
-21(p+1)2 6

EP e 7r, (15)

Proof:

Ep 4 e-I2kj2(t-t)I sin(7rkjx:) sin(rkix')1 (16)

kl =p+l k2=p+l i=1

_< 4 Z] e- 2 k2 6 = (2 ~:e -f 2k?&)
ki =p+l k2 mp+1 k=p+

22

< ~ ~ 2k2 (2k28~)6 ~r~

4 (2e-(+1 r 2~ Eee -?

- (2e _r2(p+1)26 1 V s )- 2 = 1X (17)

An error bound for truncation of the Fourier series representation of SFM now follows
immediately.
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Lemma 3.2 Let EF(p) be the error in truncating the series expansion (10) after p 2 terms

P p

Ez (p) = ISFP(X,t) - 1 : Ck(t,6)sin(rkxl)sin(rk 2x 2) .
k, =1 k2 =1

Then

EF~~p) Iit I.oe2lr2(p+I)26 (8S(P 7r6

where 11T is the area of FT and IJuj'K is the maximum of Iu over FT.

We now define the updates Uk(t, At, 6) by

Uk(t, At, 6) = 4t-6 e-7k (t ) sin(rkix')sin(7rk 2x')p(x',t')dx' dt' (19)

As the calculation of Spu proceeds in time, the recursion relation (12) provides us with
a means for updating the representation of SFt at a total cost which grows only linearly
with the number of time steps, rather than quadratically:

Ck(nAt, 6) = e-r2kl2AtCk((r - 1)At, 6) + Uk(nAt, At, 6) . (20)

We therefore avoid both the computational cost and excessive storage required by the
direct evaluation of the integrai SFA.

We still need to construct space and time quadratures for evaluating the updates Uk
in equation (19). First, consider the calculation of the trigonometric moments of P

Mk(t,6) = sin(rklx) sin(rk2 x)p(x', t') dx',

assuming M to be known at M equidistant points on F(t'). The trapezoidal rule for smooth
periodic functions converges superalgebraically, so it would be natural to use it to evaluate
Mk. Using all M points to integrate each of the first p2 moments at each time step leads
to a nonoptimal method, however, because p must increase as 6 - 0 and M --+ o0, to
ensure that the Fourier series truncation error vanishes (see equation (18) above). But
each moment Mk(t, 6) involves integration (over a smooth curve) of sine functions with
wave numbers k, < p. Since accurate integration of such an oscillatory function requires
only a fixed number of quadrature points per wavelength, we need only use O(p) of the
given points in the integration scheme. (The constant in 0(p) will depend, of course, on
the smoothness of the boundary I" and the density A.) Hence, all of the p 2 coefficients
Ck(nAt, 6) can be updated at a total cost of O(p 3 ) work. We want O(M) work per time
step, so we choose p = M 113 . In the error estimate (18), we then have

EF(p) < IrrL'S .e
-r6
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By choosing 6 = MA + , 0 < c < 2, we have3'

1/- " TfII'I2oo e-2,r2
AMc

EF(p) < e , (21)
7r

which is decaying superalgebraically with M. For example, with E = 4/15 and Al = 10,
this error bound is already less than 10-15.

Next we must carry out the time integral in the update. Standard approaches like the
trapezoidal rule are not uniformly second order accurate as N, M -+ o- and 6 --+ 0, because

of the singularity of the heat kernel at t' = t, which lies a distance 6 away from the endpoint
of the interval of integration. However, we can evaluate the integral of an exponential times
a polynomial exactly, which suggests the construction of a product integration rule. Thus,
we construct weights W, such that the rule

_t6 e- 2 kj2(t-t')g(t') dt' = Wog(t - At - 6) + Wg(t - 6) (22)

is exact whenever g is linear. (Higher order rules are equally easy to construct, but for
simplicity, we are seeking a globally second order method.) Some simple algebra gives

Wo -1+ Z At e kJ26 (23)
Z

2

ez - I - z Ate_- .2 kJ26
W 1 - -  At= e'(24) z 2

where z = rr2 IkI2At.
By evaluating the updates in the above manner (the trapezoidal rule in space and

product integration in time), it is clear that the error incurred in the calculation of the
Fourier coefficients Ck(t, 6) is O(At 2) plus a term which is decaying superalgebraically
with As = Ir(t)I/M. The net work required is O(M) per time step. Now, given the values
Ck(t, 6), it remains only to evaluate the truncated series

SFP(x,t) = E E Ck(t,6)sin(7rkl I)sin(rk2x 2)
k=I k2 =1

at the M points xj given on F(t). Direct evaluation of the series would require O(Mp2 )
work which would preclude optimality. However, SF contains only information with
wave numbers ki < p. It suffices, therefore, to evaluate it directly at 0(p) of the given
points on the one-dimensional set r(t). The values of SFA can then be reconstructed
at the rest of the points by high-order local interpolation along the curve. Using the
preceding strategy, the total amount of work required is of the form O(p3 ) + O(M) to
achieve some fixed interpolation error, say second order in As. (However, since the points
on the curve are equispaced in arclength, one can actually make the interpolation error

7



decay superalgebraically, by means of an FFT in arclength. The net computational cost
would then be of the form 0(p') + O(M log M).)

In summary, we can evaluate SFA in O(M) work per time step, with a constant inde-
pendent of N, and with an error of the form

0(At 2 + AS 2 + A,12/3-,e - 2 2 M) ,

when 6 = O(M- 2 / 3+,) and second order interpolation is used in arclength. Since the final
term is superalgebraic, the error in SFPI is second order. Higher order error estimates can
be obtained by using higher order product integration and higher order interpolation in
arclength.

3.2 Fast evaluation of SLP

We must now decide how to evaluate the local part of the potential

SLJI(X, t) = j K (x, x', t - t')1p(x', t') dx' dt'-t (t')

Since t - t' < 6, the kernel K is sharply peaked at x' = x. This rapid decay of the heat
kernel in space suggests that SLP(X, t) can be well-approximated by considering only the
values of p in a small space-time neighborhood of x E 17(t) as b --+ 0. To take advantage
of this locality, we expand r(t') and p in Taylor series, and construct an asymptotic
approximation to SLI in powers of 6.

First, assume for simplicity that F(t') is always a distance > d from the boundary of
th.e unit box. Then K can be approximated by the free-space kernel

G(x - x', t - t') = e -jX-X' 
2 /4(t-t')

47r(t - t')

as t - t' <6 -- 0. Indeed, G is the term in

K(x, x', t - t') = 1 E E 2 e
- I x - x' - 2k 2/14 ( t - t ' )

4'(t - t') kEZ2 G,=±-

with ai = 1 and k = 0. The remaining terms are decaying exponentially

[K (x, x', t - t') - G(x - x',t - t')I = 0( ___ )

for x, x' on r(t'). Thus,

SLP(X, t) = G(x - x', t - t')p(x', t') dx'dt' + 0(-)d 2 /) (25)
-r{t')

= i i .I i ! i i Hi l i p8



as 6 -- 0. This last expressior is invariant under Euclidean motions, so that for ease of
calculation we may assume that x = 0 and that the tangent line to F(t) at x = 0 is the
x-axis. We also assume that l"(t') extends to infinity, incurring an approximation error
which decays like O(e - /S) as 6 - 0. Then IF(t') may be parametrized by

x = s, y = y(s,t')

wh-re y(0, t) = y,(O,t) = 0, K' = 7,,(0, t) is the curvature and v = yt(O,t) is the normal
velocity of F(t) at s = 0.

After these notational simplifications, SLli(O, t) assumes the form

SL t ( , t) -Z t rCO e 2 - /4 ( t-t') e - .Y2 (s, t') /4 (t - V t') 1- 2s t)d d '
SLLL(O, t) oo 47(t - t /(s' +ys,t')dsdt'

where we have written M(s, t') in place of p(x', t') for simplicity. Note that s is equal to
the arclength at s = 0. The changes of variable s = 4(t - t').r and z = V4(t - t') give

SLI(0, t) 2 V6 e je 2 e- 2 (z t - 2 /4)/Z 2 1i(zr, t - z/4)/1 + y2(zr, t - z 2 /4) dr dz.

The sharp peak of the Gaussian in r and the short interval of integration in z allow us to
compute SLp as an asymptotic series in 6. After Taylor expansion of P and y about the
point (0, t), we obtain to lowest order in 6 the result

SLI(O,t) = -.P(O,t) + 0(63/2)

Retaining one more order in 6 and doing some algebra gives

sLI(o,t) = (p(o,t) + (,i - v) 2P(ot) - .,- s)) + 0(6/1).

Since the parameter s is equal to arclength at s = 0 and the curvature and normal
velocity are invariant under Euclidean motions, the preceding formula holds more generally.
We have therefore proven

Lemma 3.3 Let 1F(t) and p(x,t) be four times differentiable. Then

SLP(X(S, t), t) = [(1 + ( - v) 2)P(s, t) - - ( t (s, t)) +0(6 , (26)
7ir [ 12 3J

where , is curvature, v is normal velocity and s is arclength on F(t).

This calculation can be extended to higher order in 6 for sufficiently smooth curves
and densities, but we shall car-y it no further. The approximation of Lemma 3.3 will
suffice for the purposes of this paper: it can clearly be evaluated at M points in O(M)
work, completing our derivation of an O(MN) algorithm for evaluating the single layer
heat potential Sp.

9



3.3 Formal Description of the Algorithm
In this section, we describe the fast algorithm in a more procedural form. We first observe
that the parameter 6 was chosen in subsection 3.1 to be of the order M- 2/3 +", independent
of the time step At. In practice, it is convenient to have 6 be equal to an integer number
of time steps. We therefore set

[M-2/3+ t.

Algorithm

Comment (Choose M, N, At and the small parameter c which defines 5. Set I = and
5 = JAt. Set p = 1/ 3 .1

Step 1.

Comment [Use the local approximation SLP to evaluate the single layer heat potential Sp for the
first 1 time steps.]

do n = 1,2,...,1
do m = 1,2,..., M

Evaluate Sp(xm, nAt) via the approximation for SLJI(Xm, nAt)
given by equation (26), with nAt in place of 6 and t.

enddo
enddo

Step 2.

Comment (Initialize Fourier coefficients.]

do k, = 1,...,p
do k2 = 1,...,p

k:= (k1 , k2)
Ck(At, 6) := 0

end do
end do

Step 3.

Comment [For all subsequ ". )s, update the Fourier coefficients and calculate the history part
SFpq at the points ;,m on the curve. Then add the local approximation SLII at each xm to complete
the evaluation of the single lay,. - ., potential Sp.]

10



don=1+l,l+2,..-,N

(A) do k, = 1,...,p
do k2 = 1,...,p

k:= (kl, k2)
Evaluate the trigonometric moments Mk((n - 1)At, 5) and Mk(nAt, 6).
Compute the update Uk(nAt, At, 6) of equation (19)
by product integration (equations 22 - 24).
Uk(nAt, At, 6) = Wo.- Mk((n - 1)At, 6) + W1 M k(nAt, 6).
Update the Fourier coefficients by means of equation (20):
Ck(nAt, 6) = e- ,

2 kJ2 htCk((n - 1)At, 6) + Uk(nAt, At, 6)
end do

end do

(B) Evaluate Fourier series at p equispaced points on r(nAt).
Extend values of Fourier series to all M points xm by interpolation.

(C) do n = 1,2,...,M
Evaluate SLP(Xm, nAt) by the local approximation (26) and add to SFI(Xm, nat).

end do

end do

Remark 3.2. Inspection of the above algorithm shows that the amount of work
required is of the order O(NM), assuming fixed degree interpolation in arclength is used.
If Fourier interpolation is used in Step 3 (B), the amount of work required is of the order
O(NM log M).

Remark 3.3. As noted previously, the convergence rate of the scheme is dependent on
the product integration scheme used, the interpolation scheme used and the order of the
local approximation. The scheme described in the text is second order in At and of order 2
in 6. We have chosen in our tests to use Fourier interpolation in arclength, which increases
the computational complexity by a factor of log M, but effectively removes interpolation
as a limiting source of error.

Remark 3.4. In the algorithm outlined above, we end up computing each trigonomet-
ric moment Mk(nAt, 6) twice, once for the update Uk(nAt, At, b) and once for Uk((n +
1)At, At, 6). This is easily avoided by an appropriate modification to the program.

4 Numerical Examples

The algorithm was implemented in FORTRAN and tested on several numerical exam-
ples. We evaluated the single layer heat potential of a cosine density p(0) = cos(kO) of

11



wavenumber k on a stationary circle

r : (x = RcosO,y = Rsin0,0 0<9 < 2r)

We computed the potential at time T = 1/2 with a sequence of numerical parameters in
which the number N of time steps and the number M of points on the circle are doubled
at each stage, p and the number Mp of points used for integrating over the curve grow
like M 1/3, and 6 decreases like M- 2/3 . Thus, the total error should be dominated by the
b5/2 = M - 5

1
3 error due to Taylor expansion in the local approximation. The parameters

used and corresponding computational times are shown in Table 1.

Case N M 6 p MpI Time(Fast) Time(Direct)
1 10 20 .01 10 20 9 45
2 20 40 .0063 13 40 12 331
3 40 80 .004 16 50 21 4400
4 80 160 .0025 20 63 56 66024
5 160 320 .0016 26 80 213 (1.1 106)
6 320 640 .00099 32 102 794 (1.7 107)

7 640 1280 .00063 40 128 3074 (2.7 108)

Table 1
Table of parameters for Cases 1-7, with CPU times on the Multiflo Trace computer at Yale University.

In cases 1-4, the direct computation times were estimated by evaluating the potential
at 20 of the boundary points at each step, using the trapezoidal rule in space and second
order composite product integration in time. In cases 5-7, direct CPU times were estimated
by extrapolation.

The accuracies of the fast and direct methods are compared in Table 2 for wavenumber
k = 0. The error reported is the maximum deviation of the computed potential from the
exact potential over 20 points on the curve. Finally, Table 3 presents the error produced
by the fast algorithm for wavenumbers k = 0, 1,2 and 3.

The following observations can be made from Tables 1-3.

1. The O(AS5/3) error displayed by the fast algorithm agrees with the error analysis
of section 3.2. The direct algorithm displays O(At 2 + As2) error, but with a larger
constant of proportionality, which accounts for its poorer accuracy in the range of
parameters tested..

2. The CPU time requirements of the fast algorithm clearly grow only like NM.

3. By the time N = 640, M = 1280, the fast algorithm is about 88,000 times faster
than the direct method would have been. Case 7 required about 50 min. on the
Multiflo Trace. The direct calculation would have taken 81 years.

12



Case fast algorithm direct algorithm

1 1.2 10- 4  6.2 10- 3

2 3.1 10 - 5 9.0 10- 4

3 9.2 10- 6 1.3 10- 4

4 2.7 10-6 3.5 10- -
5 8.9 10- 7  8.5 10-6

6 2.9 10- 7 2.1 10- 6

7 1.1 10- 7 5.1 10- 7

Table 2
Comparison of absolute errors for wavenumber k = 0, using fast and direct algorithms.

Case k=O k=1 k=2 k=3
1 1.2 10- 4  1.9 10 - 4  1.1 10 - 3  7.5 10 - 3

2 3.1 10-  5.0 10- ' 3.2 10- 4  2.5 10- 3

3 9.2 10- 6 1.5 10- 5  1.0 10- 4  8.3 10- 4

4 2.7 10- 6 4.5 10- 6 3.0 10- " 2.6 10- 4

5 8.9 10- 7  1.4 10- 6 9.8 10-  8.6 10- 5

6 2.9 10 - 7  4.2 10- 7  3.0 10- 6 2.6 10-

7 1.1 10- 7  1.3 10- 7  9.5 10- 7 8.5 10- 6

Table 3
Table of absolute errors produced by the fast algorithm for Cases 1-7, with wavenumbers k 0, 1,2, 3.

13



4. Even for as few as 10 time steps and 20 boundary points, the fast algorithm is about
five times faster than the direct calculation.

5 Conclusions

In this paper, we have developed a fast algorithm for evaluating heat potentials. A de-
tailed description of the analysis is given only for the single layer potential in two space
dimensions, but the outline of the method is the same in one or three space dimensions.
The extension to double layer potentials is straightforward.

Our algorithm evaluates a heat potential at MN points, using density values at MN
points, in O(MN) work. The direct evaluation requires O(M 2N 2) work, so the fast al-
gorithm achieves a dramatic speedup: with 1280 points on the curve and 640 time steps,
the fast algorithm ran 88,000 times faster than the direct calculation would have, and
produced an error five times smaller.
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